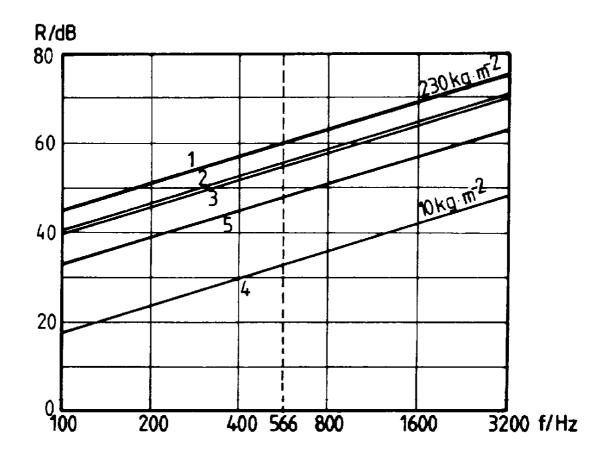
"Dünne Wände" und die Flächenmasse

"Dünne Wände" sind Wände mit Wandstärken $<<\lambda_{\text{Luft}}$.


Die (einschalige) Wand schwingt dann als Ganzes mit der Frequenz der einfallenden Schallwelle.

Zur Abschätzung der Schalldämmung wird die Flächenmasse m' (Masse pro Fläche - auch Flächengewicht) benötigt.

Bei homogenen Einfachwänden gilt:

$$m' [kg / m^2] = \rho * d$$

Material	Wandstärke d	Flächenmasse m'
Schwerbetonwand	10 cm	230
Leichtbetonwand	10 cm	130
Vollziegelwand	10 cm	150
Gipswand	6 cm	60
Glasscheibe	0,4 cm	10

Die Graphik zeigt das Schalldämmaß R [dB] bei verschiedenen Flächenmassen in Abhängigkeit von der Frequenz gemäß Gleichung

$$R [dB] = 20 * log_{10} (0.5 * m' * \omega / Z)$$

Daraus folgt:

- ⇒ Jede Verdopplung des Gewichts führt zu einer Zunahme des Schalldämmaßes um 6 dB.
- ⇒ Jede Frequenzverdopplung (Oktave) führt ebenfalls zu einer Zunahme des Schalldämmaßes um 6 dB.